
SQL Injection Prevention in Banking
Sampada Gadgil

Department Of IT,

SIES Graduate School Of Technology

Navi Mumbai, India

Abstract— SQL injection attack (SQLIA) is a type of attack
on web applications that exploits the fact that input provided
by web clients is directly included in the dynamically
generated SQL statements. SQLIA is one of the foremost
threats to web applications. In an SQL injection attack, an
attacker might insert a malicious SQL query as input to
perform an unauthorized database operation. The attack
works when a program builds queries based on strings from
the client, and passes them to a database server without
handling characters that have special meaning to the server
using SQL injection attacks, an attacker can retrieve or
modify confidential and sensitive information from the
database. The growing use of web-applications for business
purposes has given motivation to attackers to explore the
possibilities and exploit these types of attacks. In this paper all
type of SQL injection attack are discussed. An application is
developed for online banking application. This application
prevents various types of SQL attacks.

Keywords— SQL injection, Web application, WASP,
Detection, Prevention

I. INTRODUCTION

In recent years, most of our daily tasks are depend on
database driven web applications because of increasing
activity, such as banking, booking and shopping [1]. For
performing activities such as ordering the merchandize or
paying the bills, information must be trustable to these web
applications and their underlying databases but
unfortunately there is no any guarantee for confidentiality
and integrity of this information. Web applications are often
vulnerable to attacks, which can give attackers easily access
to the application's underlying database. SQL Injection is a
security exploit method in which the attacker aims at
penetrating a back-end database to manipulate, steal or
modify information in the database. The SQL Injection
attack method exploits the Web application by injecting
malicious queries, causing the manipulation of data. Almost
all SQL databases and programming languages are
potentially vulnerable. SQL Injection is subset of an
unverified user input vulnerability ("buffer overflows" are a
different subset), and the idea is to convince the application
to run SQL code that was not intended. Structured Query
Language (SQL) is the nearly universal language of
databases that allows the storage, manipulation, and
retrieval of data. Databases that use SQL include MS SQL
Server, MySQL, Oracle, Access and File maker Pro and
these databases are equally subject to SQL injection attack.
Not preventing SQL Injection attacks leaves your business
at great risk of :
a. Sensitive information can be altered or accessed.

b. It may lead to financial losses
c. In some cases like banking application, attacker can
withdraw money.
d. Steal customer information such as credit card numbers
To get a better understanding of SQL injection, we need to
have a good understanding of the kinds of communications
that take place during a typical session between a user and a
web application. The following figure shows [2] the typical
communication exchange between all the components in a
typical web application system.

 Fig 1: SQL Attack Process

SQL vulnerabilities exist where there are applications need
to dynamically constructed SQL statements according to
Web client environment. Because the server-side
applications use SQL statements in the form of patchwork
operation of the database, which allows an attacker to
submit the data they want included in SQL statements. For
all platforms, based SQL standard database software, SQL
language is valid. As long as the client data replaces the
data in SQL statements, may be attacked. The result of
SQLIA can be disastrous because a successful SQL
injection can read sensitive data from database, modify
database data and execute operations on the database. The
main consequences of these vulnerabilities are attacks on [3]
1) Authorization: Critical data may be altered by a
successful SQLIA.
2) Authentication: If there is no any proper control on
username or password, it may be possible to login to a
system as a normal user without knowing a right username
or password.
3) Confidentiality: Usually database contains sensitive
data. So attacker can access that data.
4) Integrity: By a successful SQLIA, not only attacker reads
sensitive information but also it is possible to change or
delete this information.

Sampada Gadgil/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 345- 349

www.ijcsit.com 345

SQL injection attacks are extremely dangerous types of
attacks. These attacks are very much harmful for the web
based application. This paper focus on various types of
SQL attacks. In this paper, attack types are explained with
an example. An application is developed for preventing
these attacks. This application is developed for banking
system.

II. SQL ATTACK TYPES

There are different methods of attacks that depending on the
goal of attacker are performed together or sequentially. For
a successful SQLIA the attacker should append a
syntactically correct command to the original SQL query.
1. Tautologies: This type of attack injects SQL tokens to the
conditional query statement to be evaluated always true.
Consider this example [1]:
"SELECT * FROM employee WHERE userid = '112' and
password ='aaa' OR '1 '='1
As the tautology statement (1=1) has been added to the
query statement so it is always true.
2. Union Queries: These attacks are related to the
Tautology SQLIAs. The attacker exploits vulnerable
parameters in order to change the result set of a given query.
The trick here is that the attacker injects the SQL code in
such a way that it returns data from a table different from
the one intended by the programmer. The result of Union
Query injection attacks will be a new dataset returned by
the database, containing the union of the first (developer-
intended) and the second (attacker-intended) query.
Suppose for our examples [1], that the query executed from
the server is the following:
SELECT Name, Phone FROM Users WHERE Id=$id By
injecting the following Id value:
$id= I UNION ALL SELECT credit Card Number, 1 FROM
Credit CarT able
We will have the following query:
SELECT Name, Phone FROM Users WHERE Id= 1 UNION ALL
SELECT creditCardNumber, 1 FROM Credit CarTable, which
will join the result of the original query with all the credit card
users.
3. Piggy Backed Queries: In this attack type, an attacker
tries to inject additional queries into the original query. We
distinguish this type from others because, in this case,
attackers are not trying to modify the original intended
query; instead, they are trying to include new and distinct
queries that “piggy-back” on the original query. As a result,
the database receives multiple SQL queries [4]. The first is
the intended query which is executed as normal; the
subsequent ones are the injected queries, which are
executed in addition to the first.
If the attacker inputs “’; drop table users - -” into the pass
field, the application generates the query:
SELECT accounts FROM users WHERE login=’doe’ AND
pass=’’; drop table users --’ AND pin=123
After completing the first query, the database would
recognize the query delimiter (“;”) and execute the injected
second query. The result of executing the second query
would be to drop table users, which would likely destroy
valuable information. Other types of queries could insert
new users into the database or execute stored procedures.
4. Inference: By this type of attack, intruders change the
behaviour of a database or application [1]. There are two

well-known attack techniques that are based on inference:
blind injection and timing attacks.
Blind injection - is a well-known type of SQLIA where the
attacker simply injects an SQL statement and observes the
application's behaviour: if the page continues to function
normally, then this would imply that the injected statement
resulted to true, otherwise the attacker will see a non
descriptive error and a page that might differ from the
normal one.
Timing attacks - are similar to blind injection attacks, but
here the attacker formulates the SQL statements in the form
of if-then command and uses SQL commands like
WAITFOR to cause delays in the database statements
execution along one of the branches of the if-then
conditional. [5]
SELECT account FROM users WHERE login='realUser' and
ASCII(SUBSTRING((SELECT TOP 1 name from sysobjects), 1,
1))
< X WAITFOR 5 -- 'AND pass=' ' AND pin=0, where the
attacker asks if the ASCII value of the first character in the
first name in the table is less than a number (X in our
example) and he will get 5 seconds delay in database
execution of the statement in case that condition evaluates
to true.
5. Illegal/Logically Incorrect Queries: This type of SQLIAs
is used to trigger syntax errors (which would be used to
identify injectable parameters), type conversion errors (to
deduce the data types of certain columns or extract data
from them) or logical errors (which often reveal names of
the tables and columns that caused the error), in order for
the attacker to gather information about the type and
structure of the back-end database of a given Web-
application.
SELECT accounts FROM users WHERE login= AND pass=’
‘ AND pin= convert (int,(select top 1 name from sysobjects where
xtype=u))
In the example above [6], we have assumed that the
application is using Microsoft SQL Server and the metadata
table is called sysobjects. The above-query will try extract
the first user table 'xtype=u' and to convert the table name
into an integer.
This will result in a type conversion error and MS SQL Server will
say: \Microsoft OLE DB Provider for SQL Server (0x80040E07)
Error converting varchar value CreditCards to a column of data
type int.".This message will be valuable to the attacker, since now
he will know the type of the database is Microsoft SQL Server,and
secondly, he will now know the name of the first user defined
table in the database (CreditCards).
6. Stored Procedure: SQLIAs of this type try to execute
stored procedures present in the database. Today, most
database vendors ship databases with a standard set of
stored procedures that extend the functionality of the
database and allow for interaction with the operating system
[6]. Therefore, once an attacker determines which backend
database is in use, SQLIAs can be crafted to execute stored
procedures provided by that specific database, including
procedures that interact with the operating system.
CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pass varchar2, @pin int AS
EXEC("SELECT accounts FROM users WHERE login= '
“ +@userName+ “ ‘and pass=’ “+@password+” ‘and
pin=”+@pin);
GO

Sampada Gadgil/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 345- 349

www.ijcsit.com 346

For authorized/unauthorized user the stored procedure
returns true/false. As an SQLIA, intruder input " , ;
SHUTDOWN; - -" for usemame or password. Then the
stored procedure generates the following query:
SELECT accounts FROM users WHERE login='doe' AND
pass = ' '; SHUTDOWN; -- AND pin=
The first original query is executed and consequently the
second query which is illegitimate is executed and causes
database shut down.
7.Alternate Encodings: This attack type is used in
conjunction with other attacks. In other words, alternate
encodings do not provide any unique way to attack an
application; they are simply an enabling technique that
allows attackers to evade detection and prevention
techniques and exploit vulnerabilities that might not
otherwise be exploitable.
In this attack, the following text is injected into the login field:
“legalUser’; exec(0x73687574646f776e) - - ”. The resulting
query generated by the application is:
SELECT accounts FROM users WHERE login=’legalUser’;
exec(char(0x73687574646f776e)) -- AND pass=’’ AND
pin=
This example makes use of the char() function and of
ASCII hexadecimal encoding. The char() function takes as
a parameter an integer or hexadecimal encoding of a
character and returns an instance of that character. The
stream of numbers in the second part of the injection is the
ASCII hexadecimal encoding of the string “SHUTDOWN.”
Therefore, when the query is interpreted by the database, it
would result in the execution, by the database, of the
SHUTDOWN command.

III APPLICATION Development
Here online banking application is developed to prevent
various types of SQL attacks. Banking application contains
sensitive data like account information, user id or password
etc.
This application consists of two modules:
1. Normal Process: In this module, attacker can make SQL
attack and he can access sensitive information. He can enter
invalid password using SQL keyword or operator. He can
modify the account or withdraw the money.
2. Prevent Process: In this module WASP prevention
technique is used to avoid SQL attacks. So attacker cannot
access the sensitive information. Even if the unauthorized
user tries to access account data is not available to him.
Both the modules contain sub module to perform different
types of banking operations.

A Deployment Requirement

Operating System used is Windows XP Professional. Front
End is Microsoft Visual Studio .Net 2005. Language to
develop this application used is Visual C # .Net. Back End
is SQL Server 2000. C# is the programming language that
most directly reflects the underlying Common Language
Infrastructure (CLI). Most of its intrinsic types correspond
to value-types implemented by the CLI framework.
However, the language specification does not state the code
generation requirements of the compiler: that is, it does not
state that a C# compiler must target a Common Language
Runtime, or generate Common Intermediate Language

(CIL), or generate any other specific format. Theoretically,
a C# compiler could generate machine code like traditional
compilers of C++ or FORTRAN. However, in practice, all
existing compiler implementations target CIL.
SQL Server 2000 is much more integrated with Windows
NT Server than any of its predecessors. Databases are now
stored directly in Windows NT Server files .SQL Server is
being stretched towards both the high and low end. SQL
Server 2000 creates a database using a set of operating
system files, with a separate file used for each database.
Multiple databases can no longer share the same file. There
are several important benefits to this simplification. Files
can now grow and shrink, and space management is greatly
simplified. All data and objects in the database, such as
tables, stored procedures, triggers, and views, are stored
only within the operating system files. When a database is
created, all the files that comprise the database are zeroed

out (filled with zeros) to overwrite any existing data left on

the disk by previously deleted files. This improves the
performance of day-to-day operations.

IV IMPLEMENTATION TECHNIQUE

The implementation makes use of WASP [7] tool for online
banking application. WASP stands for Web Application
SQL Injection Preventer tool. WASP tool consists of two
approaches. These are positive tainting and syntax aware
evaluation.
1) Positive tainting [7]: The effectiveness of this approach,
in that it helps address problems caused by incompleteness
in the identification of relevant data to be marked. In the
case of negative tainting, incompleteness leads to trusting
data that should not be trusted and, ultimately, to false
negatives. Our basic approach, as explained in the
following sections, automatically marks as trusted all hard-
coded strings in the code and then ensures that all SQL
keywords and operators are built using trusted data. In some
cases, this basic approach is not enough because developers
can also use external query fragments—partial SQL
commands that come from external input sources—to build
queries. Because these string fragments are not hard coded
in the application, they would not be part of the initial set of
trusted data identified by our approach and the approach
would generate false positives when the string fragments
are used in a query. To account for these cases, our
technique provides developers with a mechanism for
specifying sources of external data that should be trusted.
The data sources can be of various types such as files,
network connections, and server variables. Our approach
uses this information to mark data that comes from these
additional sources as trusted. In a typical scenario, we
expect developers to specify most of the trusted sources
before testing and deployment. However, some of these
sources might be overlooked until after a false positive is
reported, in which case, developers would add the omitted
items to the list of trusted sources. In this process, the set of
trusted data sources monotonically grows and eventually
converges to a complete set that produces no false positives.
It is important to note that false positives that occur after
deployment would be due to the use of external data
sources that have never been used during in-house testing.

Sampada Gadgil/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 345- 349

www.ijcsit.com 347

In other words, false positives are likely to occur only for
totally untested parts of applications.
Therefore, even when developers fail to completely identify
additional sources of trusted data beforehand, we expect
these sources to be identified during normal testing and the
set of trusted data to quickly converge to the complete set.
It is also worth noting that none of the subjects that we
collected and examined so far required us to specify
additional trusted data sources. All of these subjects used
only hard-coded strings to build query. Strings
Incompleteness may thus leave the application vulnerable
to attacks and can be very difficult to detect, even after
attacks actually occur, because they may go completely
unnoticed. With positive tainting, incompleteness may lead
to false positives, but it would never result in an SQLIA
escaping detection. We track taint information at the
character level rather than at the string level. We do this
because, for building SQL queries, strings are constantly
broken into substrings, manipulated, and combined.
2)Syntax aware evaluation[7]: The key feature of syntax
aware evaluation is that it considers the context in which
trusted and untrusted data is used to make sure that all parts
of a query other than string or numeric literals (for example,
SQL keywords and operators) consist only of trusted
characters. As long as untrusted data is confined to literals,
we are guaranteed that no SQLIA can be performed. The
WASP technique performs syntax-aware evaluation of a
query string immediately before the string is sent to the
database to be executed. To evaluate the query string, the
technique first uses a SQL parser to break the string into a
sequence of tokens that correspond to SQL keywords,
operators, and literals. The technique then iterates through
the tokens and checks whether tokens (that is, substrings)
other than literals contain only trusted data. If all such
tokens pass this check, the query is considered safe and is
allowed to execute.

V EXPERIMENTAL RESULTS
In this application, SQL injection affects the data in the
normal process module. It is shown in the figure 2. Here
SQL operator is used for attack purpose. Attacker can get
sensitive data by applying SQL keywords or operators
which is shown in figure 3.

 Fig 2: An example of SQL attack

 Figure 2 shows example of SQL attack. In this attack, an
unauthorized user is accessing the information. He is using SQL
operator for this purpose and he is getting the details.

 Fig 3: Result of SQL attack

Figure 4 shows one more attack on web application. This is
an example of tautological attack. In the user name field,
attacker will insert the name and SQL symbols. But when
the attacker clicks the submit button, access to the data is
not given to the attacker.

 Fig 4: An example of SQL attack

This attack is prevented, which is shown in the following
figure.

 Fig 5: Prevention of SQL attack

Sampada Gadgil/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 345- 349

www.ijcsit.com 348

 VI CONCLUSION AND FUTURE WORK

SQL injection attacks are serious for web application.
These attacks can access, alter or destroy the sensitive data.
In this paper, concept of SQL attack is explained. Different
types of attacks are explained with example.
The application is developed for online banking. For this
WASP tools is used. Two modules are developed. One of
the modules shows how attacker can access the data. The
other one shows prevention of these attacks. It is found that
the attacks can be prevented. Future scope is to actually
deploy this application on web.

REFERENCES
[1] Atefeh Tajpour, Maslin Masrom, Mohammad Zaman Heydari,

Suhaimi Ibrahim,” SQL Injection Detection and Prevention Tools
Assessment”,2010 IEEE

[2] Yi Yan, Su Zhengyuan, Dai Zucheng,”The Database Protection
System Against SQL Attacks”, 2011 IEEE

[3] Atefeh Tajpour, Suhaimi Ibrahim, Maslin Masrom,” SQL Injection
Detection and Prevention Techniques”, International Journal of
Advancements in Computing Technology Volume 3, Number 7,
August 2011

[4] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, “A
Classification of SQL Injection Attacks and Countermeasures”,2006
IEEE

[5] Fatbardh Veseli, “SQL Injection Attacks - Detection and
Prevention Techniques”

[6] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso, ‘A
Classification of SQL Injection Attacks and Countermeasures,2006
IEEE

[7] William G.J. Halfond, Alessandro Orso, “WASP: Protecting Web
Applications Using Positive Tainting and Syntax –Aware
Evaluation”, IEEE Transaction on Software Engineering, VOL 34,
NO 1, January/February 2008

Sampada Gadgil/ (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 4 (2) , 2013, 345- 349

www.ijcsit.com 349

